Графики многочленов 3-й и 4-й степеней

Теперь рассмотрим схемы графиков многочленов четвёртой степени .
Заметим, что как при больших отрицательных, так и при больших положительных значениях аргумента x значения функции будут большими числами, совпадающими по знаку с коэффициентом a . Пусть коэффициент a >0.

1 случай.

Производная многочлена имеет три различных корня x1 , x2 , x3.

В этом случае функция имеет три точки экстремума и график выглядит следующим образом.
Такого вида графики получаются, когда многочлен четвёртой степени имеет четыре различных действительных корня,
 
или когда два разных корня, а третий корень кратности два,
 
или два корня кратности два.

Пример 5.4.
Построить график функции .

Решение.
Найдём корни многочлена, решив биквадратное уравнение, или более просто разложим многочлен на множители:
= = =
=
Многочлен имеет четыре различных корня: x1 = -3 , x2 = -1 , x3 = 1 , x4 = 3 . Отметим корни на оси абсцисс.
Построим график, учитывая, что данная функция, очевидно, чётная.
f(-x) = = = f(x) Функция сомметрична относительно оси OY .

2 случай.

Производная многочлена четвёртой степени имеет два корня, один из которых имеет кратность два, и значит, в этой точке экстремума нет. График в этом случае выглядит так:

Такого вида случай получается, если многочлен четвёртой степени имеет один простой корень, а другой кратности три.

Пример 5.5.
Построить график функции .

Решение.
Отметим корни многочлена на оси абсцисс: x1 = -1 , x2 = 3 .
Первый корень имеет кратность три, а значит, функция, переходя через корень, будет менять свой знак, касаясь оси OX (смотри параграф 1 "Графики элементарных функций " график функции ). График будет выглядеть так:

3 случай.

Производная многочлена четвёртой степени имеет один действительный корень. В этом случае многочлен имеет одну точку минимума и его график схож с графиком функции y=x4.

Например, эта парабола четвёртой степени является графиком функции

Аналогично строятся графики многочленов четвёртой степени с отрицательным старшим коэффициентом. В этом случае ветви параболы четвёртой степени направлены вниз. Получаем следующую сводную таблицу.

имеет 3 корня имеет 3 корня
имеет 2 корня имеет 2 корня
имеет 1 корень имеет 1 корень

страницы:1 2 3

Hosted by uCoz